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Abstract

The peer-review process, in its present form, has been repeatedly criticized. Of the many critiques ranging from publication delays
to referee bias, this paper will focus specifically on the issue of how submitted manuscripts are distributed to qualified referees.
Unqualified referees, without the proper knowledge of a manuscript’s domain, may reject a perfectly valid study or potentially more
damaging, unknowingly accept a faulty or fraudulent result. In this paper, referee competence is analyzed with respect to referee
bid data collected from the 2005 Joint Conference on Digital Libraries (JCDL). The analysis of the referee bid behavior provides a
validation of the intuition that referees are bidding on conference submissions with regards to the subject domain of the submission.
Unfortunately, this relationship is not strong and therefore suggests that there may potentially exists other factors beyond subject
domain that may be influencing referees to bid for particular submissions.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The peer-review process is the most widely accepted method for validating research results within the scientific
community. However, its credibility as a valid certification mechanism has come under scrutiny. There exists a rich
body of literature that points to many of the inadequacies of the current system (Evans, 1995; El-Munchid, 2001; Bence
& Oppenheim, 2004), but of particular interest to this paper is the issue concerned with ensuring that referees are in fact
reviewing manuscripts within their domain of expertise (Kassirer & Campion, 1994; Eisenhart, 2002). There exists a
series of stages within the peer-review process that ultimately lead up to a referee review. One of the first and potentially
most important stage is the one that attempts to distribute submitted manuscripts to competent referees. Unfortunately,
it is difficult to study many of the stages of the peer-review process due to its confidential nature. Therefore, much
of the peer-review process, including referee assignment, remains sheltered from the rigors of the scientific method.
Fortunately, the program chairs and steering committee of the 2005 Joint Conference on Digital Libraries1 (JCDL) has
provided the Los Alamos National Laboratory (LANL) Digital Library Research and Prototyping team the referee bid
data used for their 2005 conference peer-review process so that referee assignment could be analyzed for this study.
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Fig. 1. Typical conference review stages.

In conference situations, where there exist a large number of submissions at one particular point in time (near the
submission deadline date), conference organizers tend to rely on a pool of pre-selected referees to review the submission
archive. The conference organizers require each referee to briefly look over each submission (e.g. read each submission
abstract or ACM classification codes) and place submission bids. A referee bid states the referee’s subjective opinion
of their level of expertise with regards to a submission. Furthermore, conflict of interest situations are usually identified
at this point. Once all the referee bids have been collected, the conference organizers can use any number of the many
documented manuscript-to-referee matching algorithms to distribute each submission to a set of competent referees
(Wei, Hartvigsen, & Czuchlewski, 1999). These stages are represented in Fig. 1. The data set provided by the 2005
JCDL program chair does not state which referees reviewed which submission, only the subjective opinion of the
referee’s level of expertise with respect to each submission.

Since conference organizers ask their referees to bid on submissions with regard to their domain of expertise, it
is hypothesized that referee bidding is based on two factors: (1) the subject domain of the submission and (2) the
expertise of the referee. The validity of this hypothesis is investigated using various statistical techniques that rely on
a keyword analysis of submission abstracts and the location of each referee within the greater scientific community’s
co-authorship network. In short, the analysis demonstrates that the referees of the 2005 JCDL program committee are,
in fact, bidding for submissions with respect to the subject domain of the submissions. Unfortunately, the strength
of this relationship is not strong enough to conclude that submission subject domain is the only, or even the most
significant, factor influencing referee bidding behavior.

2. The 2005 JCDL bid data set

The JCDL is an international forum that focuses on the technical, practical, and social issues concerning digital
libraries. Each year, the JCDL hosts a conference to present technical papers, posters, demonstrations, tutorials, etc.,
that present recent developments in the digital library community. From June 7 to June 10 of 2005, the JCDL was
held in Denver, Colorado in the United States (Sumner, 2005). The bid data provided by the 2005 JCDL program
chair is considered extremely sensitive, therefore careful handling and analysis of this data was the first priority of this
research endeavor. All information that is not publicly available from the JCDL website is, to the best of our knowledge,
indeterminable from the presented results. Information, such as which submissions were rejected is not provided. The
names of the referees have been anonymized by assigning each referee a unique random identifier. This section will
discuss the bid data provided by the 2005 JCDL program chair as well as the various manipulations necessary to
appropriately represent this information for analysis.

There were 264 submissions to the 2005 JCDL. Of those 264 submissions, 105 were full technical articles, 77 were
short technical articles, 40 were posters, 17 were demonstrations, 4 were panel talks, 7 were tutorials, 7 were workshop
talks, and 7 were doctoral presentations. The JCDL program committee provided the authors a table containing each
submission’s unique identification number, title, authors, type, and acceptance/rejection status. An example subset
of this data is provided in Table 1. The submission titles and authors of those submission that were rejected by the
committee have been replaced with the ### notation in order to protect the privacy of the submitters. Since accepted
submissions are freely accessible, information pertaining to accepted publications is provided2. Furthermore, note that
the title and authors have been truncated to ensure that the table fits within the margins of this paper.

Each referee on the 2005 JCDL program committee was asked to bid on which submissions they wished to review
in terms of their expertise in the subject domain of the submission. Therefore, accompanying the submission data table

2 JCDL 2005 proceedings located at: http://www.informatik.uni-trier.de/ ley/db/conf/jcdl/jcdl2005.html.

http://www.informatik.uni-trier.de/~ley/db/conf/jcdl/jcdl2005.html
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Table 1
Sample of the 2005 JCDL submission data

Sub id Submission title Submission authors Submission type Submission status

13 ### ### Full Technical Article Rejected
14 ### ### Full Technical Article Rejected
15 Creating an Infrastructure for Collaboration. . . R. David Lankes,. . . Short Technical Article Accepted
16 Graph-based Text Representation Model. . . Hidekazu Nakawatase,. . . Full Techinical Article Accepted
17 An Evaluation of Automatic Ontologies. . . Aaron Krowne,. . . Full Techinical Article Accepted

Table 2
Example bid matrix for each submission for each program committee referee, B

Sub/ref 1 2 3 4 5

13 1 2 2 3 3
14 2 3 2 3 3
15 4 2 3 1 1
16 3 3 1 2 0
17 1 3 2 3 3

Table 3
The meaning of the bid values within the bid matrix, B

Bid Meaning of the bid value

0 Did not provide a bid
1 Expert in the domain of the submission and wants to review
2 Expert in the domain of the submission
3 Not an expert in the domain of the submission
4 Conflict of interest between referee and submission

Table 4
The meaning of the bid values within the modified bid matrix, B′

Bid Meaning of the bid value

0 Unknown expertise (wildcard)
1 Expert in the domain of the submission
2 Not an expert in the domain of the submission

there also exists an associated bid matrix, B ∈ B|S|×|R|, where S is the set of submissions, R is the set of referees, and
B = {0, 1, 2, 3, 4}. It is important to note that |S| � |R|. The rows of the bid matrix refer to the unique id of each of
the submissions. The columns of the bid matrix refer to the referees of the program committee. The matrix entries are
the bid values provided by each referee for each submission. Therefore, bi,j refers to referee j’s bid for submission i,
where 0 ≤ bi,j ≤ 4. Table 2 is an artificial example of the supplied bid information. Note that the bid values for Table
2 were randomly generated and the referee names are not provided. The actual program committee for the JCDL is
public information3, but their respective bid vectors are not.

The values of the bid matrix, B, are not on an interval scale, but instead are nominal (i.e. each value symbolizes a
particular bid type). Table 3 provides the meaning for each of the bid values.

The bid matrix provided by the 2005 JCDL, B, contains extraneous information, such as ‘wants to review’ (b = 1)
and ‘conflict of interest’ (b = 4). Since this study focuses specifically on referee expertise, this information will be
discarded. Therefore, bid categories 1 and 2 will be considered the same and bid categories 0 and 4 will be considered
wildcards. The modified bid matrix used throughout the remainder of this study has the properties of B′ ∈ B′|S|×|R|
where B′ = {0, 1, 2}. Table 4 has the bid meanings of the modified bid matrix.

The original artificial bid matrix provided in Table 2 is thus transformed into the one shown in Table 5.
Of the 264 submissions, only 118 of the submissions have actual bid data. This means that 146 submissions had

bids of all 0. Therefore, only those submissions with a complete set of bid data will be analyzed for the remainder of

3 JCDL 2005 program committee available at: http://www.jcdl2005.org/progcomm.html.

http://www.jcdl2005.org/progcomm.html
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Table 5
Example modified bid matrix for each submission for each program committee referee, B′

Sub/ref 1 2 3 4 5

13 1 1 1 2 2
14 1 2 1 2 2
15 0 1 2 1 1
16 2 2 1 1 0
17 1 2 1 2 2

this study. In addition, of the 76 program committee members of the JCDL, 11 members gave no bid information. No
bid information is defined as an individual whose bid vector is all 0s. These referees were removed from the analysis.
Finally, since a portion of this analysis is based on co-authorship behavior, those referee committee members not
located within the DBLP4 were not included in this study. Of the remaining 65 referees, 5 were not in the DBLP.
Therefore, the bid matrix as defined for the remainder of this study has 118 rows (submissions), and 60 columns
(referees), B′ ∈ B′118×60.

3. The methodology

Intuitively, when ignoring conflict of interest situations, referee bidding should be based on two factors: (1) the
domain of the submission and (2) the domain of expertise of the referee. Therefore, the referee bid matrix should be
the result of each referees analysis of the submission abstracts and the referee’s area of expertise (their location in
the scientific community’s co-authorship network). This idea, which is the hypothesis of this study, is represented by
the arced dotted lines at the top of Fig. 2. To verify or falsify this hypothesis, a collection of statistical techniques are
used to determine the relationship between referee bidding and submission subject domain. The two factors of the
hypothesis are explored according to Tracks 1 and 2 of Fig. 2.

Track 1 provides a correlation between two submission similarity matrices. The first similarity matrix is constructed
using referee bid data, Sb, and the second is constructed according to an submission abstract term analysis, St (Section
4). If referees are in fact bidding according to the subject domain of the submissions, then the correlation between Sb
and St should be high. If the correlation is negative, or extremely low, then other factors that may not include submission
subject domain are influencing referee bidding. Furthermore, it is possible to cluster submissions according to referee
bid behavior. A intra-term analysis of these clusters provide an entropy value for each of the clusters. If the clusters
created by referee bidding maintain a low entropy for their highest weighted terms and a low correlation between their
term vectors, then it can be argued that referee bidding is driven by submission subject domain.

Track 2 provides the correlation between a referee similarity matrix created according to referee bidding behavior,
Rb, and a referee similarity matrix created using a relative-rank algorithm within a co-authorship network, Rg (Section
5). A high correlation means that referees who are similar in expertise, as determined by their place in the co-authorship
network, are also bidding similarly. A high correlation would be expected if referee bidding is based solely on submission
subject domain. If this correlation is low, then other factors besides submission subject domain are influencing referee
bidding. This paper will first explore Track 1 and then Track 2.

4. The bid matrix and submission similarity

This section will present the Track 1 analysis represented in Fig. 2. In order to determine the relationship between
referee bidding and submission subject domain, the submissions are related according to the bid behavior of the
program committee referees, Sb, and are related according to their abstract term-frequency inverse document-frequency
(TFIDF) term weight distributions, St (Salton, 1998). In short, a TFIDF calculation determines the most descriptive
words within a document (or document cluster) with respect to the entire document corpus. This section will first
discuss the construction of Sb and then St.

Since the values of the bid matrix, B′, refer to semantic categories and not a gradient scale, a Hamming distance
function is used to determine the similarity of any two submissions (Hamming, 1950). Hamming distance is defined

4 Digital Bibliography and Library Project available at: http://www.informatik.uni-trier.de/ ley/db/.

http://www.informatik.uni-trier.de/~ley/db/
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Fig. 2. Experiment outline.

as the amount of characters that differ between two strings of equal length. For example, if there exists the strings
“2212” and “1212”, the Hamming distance is 1 since only their first characters differ. Given the Hamming distance
between two bid vectors, h( �b′

i, �b′
j), and the length of a vector, l = | �b′

l|, the similarity between any two submissions
is calculated according to Eq. (1). To account for wildcard bids (b′

i,j = 0), if any one of the two bid vectors being
compared has an entry that contains a 0, that particular entry on both vectors is ignored and both their vector lengths,
l, are reduced by 1. For example, when comparing the two bid vectors “0121” and “2120”, their length, l, is 2 and their
Hamming distance, h, is 0 because both their first and last entries are ignored and their second and third entries are
equal. Therefore, their similarity is 1.

Sbi,j = Sbj,i = 1 − h( �b′
i, �b′

j)

l
(1)

Eq. (1) ensures a symmetrical submission similarity matrix, Sb ∈ R|S|×|S|, whose diagonal values are 1.0. According to
the sample bid matrix presented in Table 5, the submission similarity matrix shown in Table 6 is constructed using Eq. (1).

Table 6
Submission similarity determined according to their Hamming distance

Id 13 14 15 16 17

13 1.0 0.8 0.25 0.25 0.8
14 0.8 1.0 0.0 0.5 1.0
15 0.25 0.0 1.0 0.66 0.0
16 0.25 0.5 0.66 1.0 0.5
17 0.8 1.0 0.0 0.5 1.0
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Fig. 3. Submission similarity represented according to a hierarchical cluster.

4.1. Submission similarity and the dendrogram

Once a submission similarity matrix, Sb, has been constructed it is possible to hierarchically structure the submissions
into a dendrogram in order to visualize the relationship between the various submissions by means of the complete
linkage technique (Lance & Williams, 1967). The submission dendrogram constructed from Sb is presented in Fig. 3.
Note that the titles of the rejected submissions have been left out. Accepted submission titles have been truncated to
ensure readability. Furthermore, larger cluster patterns are represented as the eight boxed sections and are denoted
C1 through C8. These clusters were extracted from the dendrogram by setting a threshold on the dendrogram tree
height. The threshold, which is 1.1, was arbitrarily selected to expose enough clusters to make the following analysis
interesting.
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Table 7
Cluster feature vectors of the keywords in the submission abstracts

Cluster/term Browser Built Bureau Bush

3 3 7 3 1
4 4 3 2 0
5 1 0 1 0

A manual review of the clusters with respect to the submissions they contain demonstrates a congruency between
submission topic and referee bidding. To validate this qualitative claim, three statistical techniques are used. The
first involves analyzing the abstracts of the submissions of each of the clusters in order to determine cluster subject
domain. The second involves determining the entropy value of each cluster. Clusters that are more strict with respect
to a particular subject domain will tend to have a lower entropy. The third technique provides a correlation between
a similarity matrix constructed from the cosine similarity of the TFIDF term weight vectors of each submission, St,
and the matrix constructed from the referee bid behavior, Sb. This final correlation provides a single quantitative value
expressing the relationship between submission subject domain and referee bidding.

4.2. Entropy in the submission clusters

The eight major clusters of the submission dendrogram derived according to referee bid data can be validated
as meaningful categorizations by analyzing the terms of the submission abstracts. This requires that all submission
abstracts be parsed to determine the full collection of keywords across all submission abstracts. Each abstract is
processed by removing stop words and then applying the Porter stemming algorithm (Porter, 1980). These two processes
remove overly frequent words (i.e. the, and, it) and perform suffix stripping (i.e. computer and computation stem to
comput), respectively. Each time a particular term in the full collection of keywords is used in an abstract of one of the
cluster submissions, the term frequency for that term in that cluster is incremented by 1. An example feature vector is
provided in Table 7. For example, for all the submissions in cluster 3, the term built was used seven times.

For each cluster i, it is possible to determine how specific a particular term j is to that cluster according to Eq. (2)
where freq(i, j) is the frequency of term j in cluster i, n(i) the total number of terms in cluster i, N the number of clusters
(which is always 8 for this experiment), and nc(j) is the number of clusters for which term j appears (Salton, 1998).

TFIDF(i, j) = freq(i, j)

n(i)
× log10

(
N

nc(j)

)
(2)

The higher the TFIDF weight for term j in cluster i, the more specific term j is to the cluster i and therefore the more
suited it is as a description of the cluster’s subject domain. The following table presents the TFIDF calculations for the
sample feature vector presented in Table 8.

In order to determine the subject domain of each of the eight clusters, the top 10 TFIDF weighted terms were
extracted. Table 9 provides these terms ordered by their TFIDF weight where term 1 has a higher weight than term
2. The term weight distributions derived from the TFIDF calculation of the cluster abstracts can now be represented
according to their internal cluster information content. Internal cluster information content can be calculated using
the standard entropy equation as defined according to its information theoretic sense (Shannon, 1948). The lower the
entropy, the more specialized, or focused, the cluster. The higher the entropy, the less specialized. Since clusters vary
in size, the entropy for a cluster is calculated only for the top 10 term weights presented in Table 9. Furthermore, since
an entropy calculation is defined for a probability distribution, Eq. (3) normalizes the top 10 term weights.

Table 8
Cluster TFIDF term weight vectors of the keywords in the submission abstracts

Cluster/term Browser Built Bureau Bush

3 0.00 0.08 0.00 0.03
4 0.00 0.05 0.00 0.00
5 0.00 0.00 0.00 0.00
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Table 9
Top 10 terms for the eight clusters defined in Fig. 3

C1 C2 C3 C4 C5 C6 C7 C8

1 webcast behavior extract patent name hidden ecl photo
2 cyberinfrastructur drew powerpoint tobacco surrog crawler morf preserv
3 ncknow note handel invent music subschema relev video
4 interview overload mainli determin disambigu flora item-level european
5 teacher engag train hidden segment ontos network alert
6 descriptor factor graph control candid queri citat dark
7 faculti gather step american network expans circleview region
8 lesson school weight chemic tempor homepag dlii busi
9 survei teamsearch algebra compani citat plant extract addit
10 transcript visualis basi searchabl genet reusabl meta-inform mobil

TFIDF′(i, j) = TFIDF(i, j)∑k<10
k=0 TFIDF(i, k)

(3)

The entropy of a cluster is then calculated over the probability distribution as described by Eq. (4), where H(i) is
the entropy for cluster i.

H(i) = −
j<10∑
j=0

TFIDF′(i, j) log2(TFIDF′(i, j)) (4)

The entropy values for the eight clusters of the dendrogram presented in Fig. 3 are presented in Table 10.
It is interesting to note that C5, the lowest entropy cluster, is composed mainly of submissions associated with

name disambiguation and music in digital library research. On the other hand, the highest entropy cluster C2 has a
mix of more unrelated submissions ranging from digital libraries in educational settings to infectious diseases and
terrorism. Figs. 4 and 5 present the distribution of the term weights for the top 10 terms of the eight clusters. The
steeper the distribution tail, the lower the cluster entropy and therefore the more focused the cluster is towards its
higher weighted terms. The analysis of the terms for each cluster points to a qualitative relationship between referee
bidding and submission subject domain.

A more quantitative validation can be determined when the TFIDF term weight vectors of the eight clusters are
compared using a Spearman rank-order correlation. The correlations are performed on the cluster’s TFIDF term weight
vectors which contain the entire abstract dictionary, D, where |D| = 2121. Table 11 provides the Spearman rank-order
correlations for each cluster comparison. What is noticeable from Table 11 is that all the correlations are less than
±0.12. The fact that the clusters, which are organized by referee bidding, yield very low correlations between their
TFIDF term weight vectors means that the clusters are well separated according to their term distributions. If these
correlations were high, then it would be difficult to claim that the clusters are organized according to subject domain
and thus referee bidding would not be related to submission subject domain. Since the correlations are all less that
±0.12, this confirms the hypothesis that there does exist a relationship between the bidding behavior of the conference
referees and the subject domain of the submission abstracts. The next section will further explore the strength of this
relationship.

Table 10
Entropy values for the eight clusters defined in Fig. 3

Cluster Entropy

1 3.2668
2 3.2840
3 3.2148
4 3.2213
5 3.2025
6 3.2281
7 3.2610
8 3.2442
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Fig. 4. Normalized TFIDF weights for the 10 terms of Table 9 for the clusters 1 through 4 defined in Fig. 3.

4.3. Cosine similarity correlation

To further quantify the relationship between referee bidding and a submission’s subject domain, it is possible to
correlate the relationship between submissions based on referee bidding, on the one hand, and the relationship between
submissions based on their TFIDF term weight vectors, on the other. This requires the construction of the similarity
matrix St, which denotes the cosine similarity between every submission with respect to their complete TFIDF term
weight vector. This means that each term in the abstracts of each submission is analyzed according to the TFIDF

Fig. 5. Normalized TFIDF weights for the 10 terms of Table 9 for the clusters 5 through 8 defined in Fig. 3.
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Table 11
Spearman rank-order correlations for the 2121 TFIDF term weights of the eight clusters defined in Fig. 3

C1 C2 C3 C4 C5 C6 C7 C8

C1 1.0 0.10008 0.04776 0.01666 0.02687 0.08817 0.07590 0.00653
C2 0.10008 1.0 0.07817 0.03279 0.03958 0.07983 0.08225 −0.06390
C3 0.04776 0.07817 1.0 0.04314 0.10796 0.11926 0.14579 0.02117
C4 0.01666 0.03279 0.04314 1.0 0.04393 0.07461 0.06287 −0.04580
C5 0.02687 0.03958 0.10796 0.04393 1.0 0.09844 0.11082 −0.05910
C6 0.08817 0.07983 0.11926 0.07461 0.09844 1.0 0.14143 −0.00126
C7 0.07590 0.08225 0.14579 0.06287 0.11082 0.14143 1.0 0.00549
C8 0.00653 −0.06390 0.02117 −0.04580 −0.05910 −0.00126 0.00549 1.0

equation presented in Eq. (2). This results in a matrix T ∈ R|S|×|D| where |S| is the size of the submission archive and
|D| is the size of the full collection of terms of all abstracts in the submission archive. For this particular experiment
T is therefore defined as T ∈ R118×2121. The TFIDF term weight vector of each submission can be compared against
every other submission’s TFIDF term weight vector using the standard cosine similarity function presented in Eq.
(5), where �ti is the TFIDF term weight vector for submission i. This equation guarantees a symmetrical matrix with a
diagonal of 1.0.

Sti,j = Stj,i = �ti · �tj
‖�ti‖ · ‖�tj‖ (5)

Sb and St similarities can not be assumed to be parametric5, therefore the more robust Spearman rank-order
correlation, ρ, was adopted to asses correlations. The Spearman ρ correlation between St and Sb was determined to
be 0.153. This means that submissions categorized according to a TFIDF analysis of their abstracts and submissions
categorized according to the referee bid behavior are in fact positively correlated, though not strongly.

ρ = 0.153, p < 2.2−16

In literature, there exists arguments against judging research similarity according to manuscript term usage
(Leydesdorff, 1989, 1997). While TFIDF weighting is an established method for determining document similarity
(Baeza-Yates & Ribeiro-Neto, 1999), the construction of St occurs only at the single term level and therefore, a term
may have several conceptual mappings (e.g. network in the graph theoretic sense and in the communication infras-
tructure sense). Thus, St is inevitably an approximation of the conceptual mapping between the various submissions.
However, given that the analyzed abstracts were generated by a small, well-focused community of researchers, such
homonyms may not be so prevalent (Leydesdorff, 1989).

5. The bid matrix and referee similarity

This section will overview the experiment as described by Track 2 of Fig. 2. If referees are deemed similar in
expertise, as determined by their relative location to one another within the scientific community’s co-authorship
network, then similar referees should be bidding similarly. To test this hypothesis, two referee similarity matrices are
created. The first referee similarity matrix, Rb ∈ R|R|×|R|, is constructed from the transpose of the modified bid matrix,
B′T. Each referee is compared to each other referee with respect to their bidding behavior. Based on the transpose of
the artificial data from Table 2, the same similarity equation used to construct the submission similarity matrix, Eq. (1),
can be used to construct the referee similarity matrix presented in Table 12. The next section will present a dendrorgam
of Rb before discussing the second referee similarity matrix, Rg.

5.1. Referee similarity and the dendrogram

Given the referee similarity matrix, Rb, the dendrogram in Fig. 6 can be constructed. Unfortunately, due to
privacy issues, the referee names are not provided. What is noticeable from the dendrogram is the collection of

5 Although Sb follows a normal distribution (F = 0.858), but the similarities of St follow an exponential distribution.
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Table 12
Referee similarity determined according to their Hamming distance

Ref 1 2 3 4 5

1 1.0 0.5 0.75 0.0 0.0
2 0.5 1.0 0.2 0.4 0.75
3 0.75 0.2 1.0 0.2 0.0
4 0.0 0.4 0.2 1.0 1.0
5 0.0 0.75 0.0 1.0 1.0

Fig. 6. Referee similarity represented according to a hierarchical cluster.
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nearly identical referees on the upper branch. When reviewing the modified bid matrix, B′, it becomes apparent
that 19 of the referees stated themselves to be expert in the domain of every submission (excluding their wildcard
bids).

5.2. Relative-rank correlation

In order to provide a quantitative evaluation of the similarity of referees with respect to their bidding behavior
and their domain of expertise, a relative-rank algorithm within a co-authorship network is computed to deter-
mine referee similarity. It has been widely accepted that co-authorship networks represent the relationship of
individuals with respect to their domain of expertise (Newman, 2004). The relative-rank algorithm will deter-
mine the similarity of each referee with respect to each other referee as defined by their relative location to
one another within the greater scientific community’s co-authorship network. The similarity of the referees as
determined by their relative-rank, Rg, and their similarity as determined by their bid behavior, Rb, can then be
correlated. A high correlation means that referees of similar expertise are bidding in a similar manner. A low
correlation means that referees of similar expertise are not bidding in a similar manner. The co-authorship net-
work, G, used for this experiment was constructed from the DBLP database as of October 2005. The DBLP
co-authorship network has 284,082 nodes (authors) and 2,167,018 edges (co-authorship relationships). This sec-
tion will first formalize the co-authorship network data structure and relative-rank algorithm before discussing the
results.

A co-authorship network is defined by a graph composed of nodes that represent authors and edges that represent a
joint publication. Therefore, a co-authorship network is represented by G = (N, E, W), where N is the set of authors in
the network, E is the set of edges relating the various authors, and W is the set of weights associated with the strength
of tie between any two collaborating authors. Any edge, ei,j , connects two authors, ni and nj , with a respective weight
of wi,j . Furthermore, E ⊆ N × N and |E| = |W |. The edge weight between any two authors is determined by Eq.
(6), where the summation is over the set of all manuscripts registered with the DBLP, M, expressing a collaboration
between authors ni and nj , and the function A(m) returns the total number of authors for manuscript m, where m ∈ M

and wi,j ∈ R+ (Liu, Bollen, Nelson, & de Sompel, 2005; Newman, 2001).

wi,j = wj,i =
∑

∀m∈M authored by i,j

1

A(m) − 1
(6)

To provide the reader with an understanding of the relationship between the 2005 JCDL program committee mem-
bers, a subset of the DBLP co-authorship network which contains the program committee’s co-authorship relationships
is presented in Fig. 7. Note that this network was not constructed using referee bid data, but from information that
is publicly available through the DBLP database. Furthermore, the co-authorship edge weights have been left out to
improve readability.

The final analysis to be performed is to rank each of the 60 referees relative to one another so as to construct
Rg ∈ R|R|×|R|, Eq. (7). For each referee in the JCDL program committee that provided valid bid data and is located in
the DBLP, a similarity value to every other member in the committee was computed using a relative-rank algorithm
(sometimes called a ‘personalized’ rank) (Rodriguez & Bollen, 2005; White & Smyth, 2003)within the DBLP co-
authorship network. Since G is a weighted graph, the ranking algorithm actually used in this experiment is the weighted
relative-rank implementation described in (Rodriguez & Bollen, 2005).

Rg =

⎛
⎜⎜⎜⎝

RgR1,R1
· · · RgR1,R|R|

...
. . .

...

RgR|R|,R1
· · · RgR|R|,R|R|

⎞
⎟⎟⎟⎠ (7)

An example of relative-ranking is as follows. Given a network, such as the one displayed in Fig. 7, the relative-rank
algorithm would rank FOX more strongly to NELSON than to RAY since there exists a clique relationship between
FOX, NELSON, and their co-authors. This network structure does not exist between FOX and RAY. Since co-authorship
networks relate individuals with respect to similar domains of expertise, the conclusion to be drawn is that the stronger
ranking of FOX to NELSON implies that FOX is more related by expertise to NELSON than he is to RAY. A simpli-
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Fig. 7. Subset of the DBLP co-authorship network containing only connected JCDL referees.

fied version of the pseudo-code for constructing Rg, Eq. (7), is presented in Algorithm 1. For a more indepth, and
formal, review of relative-rank algorithms for network analysis, refer to (Rodriguez & Bollen, 2005; White & Smyth,
2003).

Algorithm 1. Constructing the referee similarity matrix Rg
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Fig. 8. Human-factor noise in review stages.

Because the similarity values of Rg are not on an interval scale, the use of a non-parametric correlation test, such as
the Spearman rank-order correlation, was warranted. The Spearman rank-order correlation between Rb and Rg values
was calculated to be 0.101. The positive correlation indicates that referees are bidding with respect to their domain of
expertise, but the low correlation may point to other factors.

ρ = 0.101, p < 2.2−16

Co-authorship networks are not the only data from which author similarity within a domain can be determined.
For instance, many authors may publish single authored manuscripts and thus may find themselves not connected
within the greater scientific community’s co-authorship network. Furthermore, not all collaborations, and therefore
similarity of expertise, lead to co-authored publications (Borgman & Furner, 2002) and therefore any assessment of
author similarities based on collaboration relationships derived from co-authorship provides only a partial picture of the
entire space of existing similarities. Nevertheless, those collaborations that have effectively resulted in co-authorships
are positively identified by this method. Using a wider range of bibliographic data may result in an incrementally more
complete assessment of author similarity. Unfortunately, such an effort was beyond the scope of this study, but can be
included in follow-up studies.

6. Conclusion

This paper provided an exploration of the bidding behavior of the 2005 JCDL program committee. The various
analysis techniques used demonstrate that the 2005 JCDL program committee did, in fact, bid for conference submis-
sions with respect to the subject domain of the submission. On the other hand, the strength of this relationship is low
and therefore demonstrates that other factors may be involved in referee bidding. One such factor seems to be referee
fatigue. With 146 submissions having no bid data and with 19 referees stating themselves to be an expert in the domain
of all submissions, human-driven referee bidding in conference settings may not be the most optimal technique for
performing conference peer-review. Since bidding is the preliminary component of the manuscript-to-referee matching
algorithm, sloppy bidding can have dramatic effects on which referees actually review which submissions, Fig. 8. In
general, the stages that follow from the inclusion of noisy data in the peer-review chain can severely effect the quality
of the peer-review process. It is speculated that referee fatigue not only influences the bidding and manuscript dis-
semination stages of the review cycle, but potentially more damaging, fatigued referees could be rejecting acceptable
manuscripts or accepting fraudulent or faulty manuscripts in the review stage.

Future work in this area will focus on expanding this study’s hypothesis in order to develop a mathematical model
of the factors influencing referee bidding. Furthermore, an application of this methodology to bid data from other
conferences can help to provide a broader perspective (and confirmation) of the factors influencing submission bidding
in the peer-review process.
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